LOYOLA COLLEGE (AUTONOMOUS) CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **ALLIED**

THIRD SEMESTER - NOVEMBER 2024

18UST3AL01 - MATHEMATICAL STATISTICS - I

Date: 15-11-2024	Dept. No.	Max. : 100 Marks

Time: 09:00 am-12:00 pm

SECTION A

Answer ANY FOUR of the following

 $4 \times 10 = 40 \text{ Marks}$

- 1. Explain discrete and continuous random variables with suitable example.
- 2. Ten coins are thrown simultaneously. Find the probability of getting
 - (i) atleast seven heads. (ii) Atmost six tails
- 3. Derive the mean and variance of Geometric Distribution.
- 4. a) Discuss the differentiate between 'Correlation and 'Regression
 - b) Define Uniform Distribution. and obtain its m.g.f

- (6) (4)
- 5. In a Binomial distribution with parameters n = 5, p = 0.3. Find the probability of getting
 - (i) atleast 3 success, (ii) atmost 3 success and (iii) exactly 3 failures.
- 6. Let X be normally distributed with mean 8 and standard deviation 4. Find $P(5 \le X \le 10)$ and $P(10 \le X \le 15)$
- 7. Derive the mean and variance of the Normal Distribution.
- 8. A simple random sample of size 100 has mean 15, the population variance being 25. Find an interval estimate of the population mean with a confidence level of i) 95% and (ii) 99%.

SECTION B

Answer ANY THREE of the following

 $3 \times 20 = 60 \text{ Marks}$

9. A random variable X has the following probability distribution:

Determine (i) k (ii) P(X < 3) (iii) $P(X \ge 6)$ and (iv) P(0 < X < 5)

X	0	1	2	3	4	5	6	7
P(x)	0	K	2k	2k	3k	K ²	2K ²	7K ² +k

- 10. State and prove Central limit theorem.
- 11. (i) Derive the mean and variance of the Poisson distribution
 - (ii) Derive mean and variance of Binomial Distribution
- 12. State and prove Chebyshev's inequality and state its use.
- 13. Calculate Karl Pearson's coefficient of correlation from the following data.

Marks in Economics	48	35	17	23	47
Marks in Commerce	45	20	40	25	45

- 14. a) Given a normal curve with mean 25.3 and standard deviation 8.1, find the area under the curve between 20.6 and 29.1
 - b) Obtain two regression lines from the following data n = 20, $\Sigma X = 80$, $\Sigma Y = 40$, $\Sigma X2 = 1680$, $\Sigma X2 = 320$, $\Sigma XY = 480$.

\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$